

GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING (Autonomous) Approved by AICTE, New Delhi and Affiliated to JNTU-Kakinada Re-accredited by NAAC with "A" Grade with a CGPA of 3.47/4.00 Madhurawada, Visakhapatnam - 530 048.

# DEPARTMENT OF CIVIL ENGINEERING SCHEME OF COURSE WORK

# **Course Details:**

| Course Title   | DESIGN OF REINFORCED CONCRETE STRUCTURES                                                   |
|----------------|--------------------------------------------------------------------------------------------|
| Course Code    | 20CE1117                                                                                   |
| LTPC           | 3 0 0 3                                                                                    |
| Program        | B.Tech.                                                                                    |
| Specialization | CIVIL ENGINEERING                                                                          |
| Semester       | V                                                                                          |
| Prerequisites  | Strength of Materials, Building Materials and Concrete Technology,<br>Structural Analysis. |
|                | Advanced Reinforced Concrete Structures                                                    |
| prerequisite   |                                                                                            |

# **COURSE OUTCOMES (COs):**

After completion of this course the student would be able to

| СО | <b>Course Outcomes</b>                                                                                            | Learning Outcomes                                                                                                                                                                                                                        |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1  | Describe the methods of design to reinforced concrete members                                                     | <ol> <li>Compare the concept of various methods of<br/>design (L2)</li> <li>Select the sizes of members in reinforced<br/>concrete design (L2)</li> <li>Discuss the design approaches to reinforced<br/>concrete members (L2)</li> </ol> |  |  |  |
| 2  | Apply the concept of Limit State design to beams.                                                                 | <ol> <li>Design a singly reinforced beam (L3)</li> <li>Design a doubly reinforced beam (L3)</li> <li>Design of flanged beam sections (L3)</li> </ol>                                                                                     |  |  |  |
| 3  | Design the members subjected to shear, torsion and bond                                                           | <ol> <li>Apply the shear provisions to various beams<br/>(L3)</li> <li>Illustrate the beam design with torsion<br/>provisions (L3)</li> <li>Estimate the development length requirement in<br/>beams (L2)</li> </ol>                     |  |  |  |
| 4  | Design one-way and two-way slabs including dog-legged staircase                                                   | <ol> <li>Classify different slabs and design one-way slab<br/>and cantilever slabs (L2)</li> <li>Design of two way slabs for different support<br/>conditions (L3)</li> <li>Design of a dog-legged stair case (L3)</li> </ol>            |  |  |  |
| 5  | Design columns subjected to axial<br>load, uniaxial and bi-axial bending<br>and also design the isolated footings | <ol> <li>Design of axially loaded column with uniaxial<br/>bending (L3)</li> <li>Design of axially loaded column with biaxial<br/>bending (L3)</li> <li>Design of an isolated footing (L3)</li> </ol>                                    |  |  |  |

## PROGRAMME OUTCOMES

- 1. Graduates will be able to apply the knowledge of mathematics, science, engineering fundamentals to solve complex civil engineering problems.
- 2. Graduates will attain the capability to identify, formulate and analyse problems related to

civil engineering and substantiate the conclusions

- Graduates will be in a position to design solutions for civil engineering problems and design system components and processes that meet the specified needs with appropriate consideration to public health and safety.
- Graduates will be able to perform analysis and interpretation of data by using research methods such as design of experiments to synthesize the information and to provide valid conclusions.
- 5. Graduates will be able to select and apply appropriate techniques from the available resources and modern civil engineering and software tools, and will be able to predict and model complex engineering activities with an understanding of the practical limitations.
- Graduates will be able to carry out their professional practice in civil engineering by appropriately considering and weighing the issues related to society and culture and the consequent responsibilities.
- 7. Graduates will be able to understand the impact of the professional engineering solutions on environmental safety and legal issues.
- 8. Graduates will transform into responsible citizens by resorting to professional ethics and norms of the engineering practice.
- 9. Graduates will be able to function effectively in individual capacity as well as a member in diverse teams and in multidisciplinary streams.
- 10. Graduates will be able to communicate fluently on complex engineering activities with the engineering community and society, and will be able to prepare reports and make presentations effectively.
- 11. Graduates will be able to demonstrate knowledge and understanding of the engineering and management principles and apply the same while managing projects in multidisciplinary environments.
- 12. Graduates will engage themselves in independent and life-long learning in the broadest context of technological change while continuing professional practice in their specialized areas of civil engineering.

#### **PROGRAMME SPECIFIC OUTCOMES(PSOs):**

1. Collect, process and analyse the data from topographic surveys, remote sensing, hydrogeological investigations, geotechnical explorations, and integrate the data for planning of civil engineering infrastructure.

2. Analyse and design of substructures and superstructure for buildings, bridges, irrigation

structures and pavements.

3. Estimate, cost evaluation, execution and management of civil engineering projects.

| CO         | <b>PO1</b> | PO2 | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | PO10 | PO11 | PO12 |
|------------|------------|-----|-----|-----|-----|------------|------------|------------|------------|------|------|------|
| CO1        | 3          | 3   | 3   | -   | -   | 3          | 1          | -          | 1          | -    | -    | -    |
| CO2        | 3          | 3   | 3   | -   | -   | 3          | 1          | -          | -          | -    | -    | -    |
| <b>CO3</b> | 3          | 3   | 3   | -   | -   | 3          | 1          | -          | 1          | -    | -    | -    |
| <b>CO4</b> | 3          | 3   | 3   | -   | -   | 3          | 1          | -          | 1          | -    | -    | -    |
| CO5        | 3          | 3   | 3   | -   | -   | 3          | 1          | -          | 1          | -    | -    | -    |

### **Course Outcome Vs Program Outcomes:**

# **Course Outcome Vs Programme Specific Outcomes:**

| CO         | PSO1 | PSO2 | PSO3 |
|------------|------|------|------|
| <b>CO1</b> | -    | 3    | -    |
| CO2        | 3    | -    | -    |
| <b>CO3</b> | -    | 3    | -    |
| <b>CO4</b> | -    | 3    | -    |
| CO5        | -    | 3    | _    |

Mapping Levels:

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), put -: No Correlation

Assessment Methods:

Assignment / Quiz / Seminar / Case Study / Mid-Test / End Exam

#### **Teaching-Learning and Evaluation:**

| Week | TOPIC / CONTENTS                                                                                                                                                                               | CO | Sample questions                                                                                                                                       | Teaching<br>- learning<br>strategy | Assessment<br>Method &<br>Schedule |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|
| 1    | Introduction to Working<br>stress Method , Design for<br>bending – stress and strain<br>diagrams- Permissible<br>stresses-calculation of<br>design constants                                   | 1  | What are different Design<br>methods for design of RC<br>structures?<br>Calculate the design<br>constants to the given grade<br>of concrete and steel. | Lecture<br>Problem<br>solving      |                                    |
| 2    | Analysis and design of<br>singly reinforced beams-<br>Moment of Resistance of<br>section-Simply supported<br>beams.                                                                            | 1  | Calculate moment of<br>resistance of the given<br>section.<br>Design the beam for the<br>givenloading/Moment.                                          | Lecture<br>Problem<br>solving      |                                    |
| 3    | Analysis and design of<br>doubly reinforced beams-<br>identification of tension and<br>Compression Zone                                                                                        | 1  | Analyse and design the<br>beam for the given loading<br>or Design the beam for the<br>given Moment. Placing of<br>Tension and Compression<br>steel     | Lecture<br>Problem<br>solving      | Assignment                         |
| 4    | Introduction to Limit State<br>Methodof Design-Concepts<br>-Characteristic loads-<br>Characteristic strength-<br>Partial load factor and<br>Material Safety factors-<br>Representative Stress- | 2  | What are the partial safety<br>factors for strength?<br>What are the assumptions<br>made in the Limit state of<br>Design?<br>Calculate the moment of   | Lecture<br>Problem<br>solving      |                                    |

|    | Strain curves- Assumptions<br>in limit state design-Stress<br>block parameters -Limiting<br>moment of resistance.                                |   | resistance of the given section.                                                                                                                                                     |                                          |                     |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------|--|--|
| 5  | Limit state analysis and design of singly reinforced beams.                                                                                      | 2 | Design of a simply<br>supported beam for the<br>given loading using limit<br>state method.                                                                                           | Lecture<br>Problem<br>solving            |                     |  |  |
| 6  | Limit state analysis and design of doubly reinforced beams.                                                                                      | 2 | Design a simply supported<br>beam for the given loading<br>when the depth is restricted                                                                                              | Lecture<br>Problem<br>solving            |                     |  |  |
| 7  | Flanged sections-Design<br>of T andL beam sections.<br>Limit state analysis and<br>design of sections for shear<br>and torsion –                 | 3 | Design a T-beam section for<br>thespan and loading given.<br>Prepare Reinforcement<br>details in a drawing for<br>T-beam and L-beam.<br>Design of a beam for Shear<br>reinforcement. | Lecture<br>Problem<br>solving<br>Drawing |                     |  |  |
| 8  | Concept of bond, anchorage<br>and development length, I.S<br>Code provisions. Design<br>examples in simply<br>supported and continuous<br>beams. | 3 | Calculate the development<br>length for the given<br>parameters.<br>Draw Reinforcement details<br>in a continuous beam.                                                              | Lecture<br>Problem<br>solving<br>Drawing |                     |  |  |
| 9  | MID TEST – I                                                                                                                                     |   |                                                                                                                                                                                      |                                          |                     |  |  |
| 10 | Slabs- Design of one way slabs                                                                                                                   | 4 | Identify edge conditions in restrained slabs                                                                                                                                         | Lecture<br>Problem<br>solving            |                     |  |  |
| 11 | Two way slabs and<br>Continuous slabs using I.S<br>coefficients.                                                                                 | 4 | Design the two way slabs.                                                                                                                                                            | Lecture<br>Problem<br>solving            |                     |  |  |
| 12 | Draw Reinforcement details<br>of One- way, Two-way and<br>Continuous slabs.                                                                      | 4 | Identify boundary conditions<br>in restrained slabs.<br>Draw Reinforcement details<br>for slabs                                                                                      | Lecture<br>Problem<br>solving<br>Drawing |                     |  |  |
| 13 | Columns-Short and long<br>columns– Uni- axial loads,<br>Uni - axial bending and bi-<br>axial bending – I.S code<br>provisions.                   | 5 | Design a short column for the<br>loads and section given.<br>Design of a column for<br>slenderness.                                                                                  | Lecture<br>Problem<br>solving            | Assignment/<br>Quiz |  |  |
| 14 | Footings-Different types of<br>footings–Design of isolated,<br>square, rectangular and<br>circular footings.                                     | 5 | Design an isolated footing for<br>the given load.                                                                                                                                    | Lecture<br>Problem<br>solving            |                     |  |  |
| 15 | Reinforcement details of typical cross section of column and footing.                                                                            | 5 | Draw plan and section of a rectangular footing and show the reinforcement details. Also show column details.                                                                         | Lecture<br>Problem<br>solving<br>Drawing |                     |  |  |
| 16 |                                                                                                                                                  |   | MID TEST - II                                                                                                                                                                        |                                          |                     |  |  |
| 17 | END EXAM                                                                                                                                         |   |                                                                                                                                                                                      |                                          |                     |  |  |